کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5078991 | 1477519 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A heuristic solution method for disassemble-to-order problems with binomial disassembly yields
ترجمه فارسی عنوان
یک روش راه حل اکتشافی برای مشکلات جداسازی به منظور با بازده دوجمله ای
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
بازسازی، مشکل انحلال به منظور، بازده دو زاویه، اهریمنی،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی صنعتی و تولید
چکیده انگلیسی
In disassemble-to-order problems, where a specific amount of several components must be obtained from the disassembly of several types of returned products, random disassembly yields create a formidable challenge for appropriate planning. In this context, it is typically assumed that yields from disassembly are either stochastically proportional or follow a binomial process. In the case of yield process misspecification, it has been shown (see Inderfurth et al. (2015)) that assuming binomial yields usually results in a lower penalty than assuming stochastically proportional yields. While there have been heuristics developed for the disassemble-to-order problem with stochastically proportional yields, a suitable, powerful heuristic for binomial yields is needed in order to facilitate solving problems with complex real-world product structures. We present a heuristic approach that is based on a decomposition procedure for the underlying non-linear stochastic optimization problem and that can be applied to problems of arbitrary size. A comprehensive numerical performance study using both randomly generated instances as well as a full factorial experimental design and, additionally, the data of a practical case example reveals that this heuristic delivers close-to-optimal results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Production Economics - Volume 185, March 2017, Pages 266-274
Journal: International Journal of Production Economics - Volume 185, March 2017, Pages 266-274
نویسندگان
Karl Inderfurth, Ian M. Langella, Sandra Transchel, Stephanie Vogelgesang,