کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
508868 | 865456 | 2016 | 11 صفحه PDF | دانلود رایگان |

• A shoe that fits the foot of each one, improves comfort and the customer health.
• Accurate foot reconstruction is crucial for the custom design process.
• This paper presents a new reconstruction algorithm that fits the foot topology.
• The GNG-based method improves 4 times the precision of other well-known methods.
Custom shoes manufacturing is one of the major challenges facing the footwear industry today. A shoe for everyone: it is a change in the production model in which each individual’s foot is the main focus, replacing traditional size systems based on population means. This paradigm shift represents a major effort for the industry, for which the design and not production becomes the main bottleneck. It is therefore necessary to accelerate the design process by improving the accuracy of current methods.The starting point for making a shoe that fits the client’s foot anatomy is scanning the surface of the foot. Automated foot model reconstruction is accomplished through the use of the self-organising growing neural gas (GNG) network, which is able to topographically map the low dimension of the network to the high dimension of the manifold of the scanner acquisitions without requiring a priori knowledge of the structure of the input space.The GNG obtains a surface representation adapted to the topology of the foot, is accurate, tolerant to noise, and eliminates outliers. It also improves the reconstruction in “dark” areas where the scanner does not obtain information: the heel and toe areas. The method reconstructs the foot surface 4 times more accurately than other well-known methods. The method is generic and easily extensible to other industrial objects that need to be digitized and reconstructed with accuracy and efficiency requirements.
Journal: Computers in Industry - Volume 75, January 2016, Pages 116–126