کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
511846 865931 2007 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kalman filtering for neural prediction of response spectra from mining tremors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Kalman filtering for neural prediction of response spectra from mining tremors
چکیده انگلیسی

Acceleration response spectra (ARS) for mining tremors in the Upper Silesian Coalfield, Poland are generated using neural networks trained by means of Kalman filtering. The target ARS were computed on the base of measured accelerograms. It was proved that the standard feed-forward, layered neural network, trained by the DEFK (decoupled extended Kalman filter) algorithm is numerically much less efficient than the standard recurrent NN learnt by Recurrent DEKF, cf. [Haykin S, (editor). Kalman filtering and neural networks. New York: John Wiley & Sons; 2001]. It is also shown that the studied KF algorithms are better than the traditional Resilient-Propagation learning method. The improvement of the training process and neural prediction due to introduction of an autoregressive input is also discussed in the paper.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Structures - Volume 85, Issues 15–16, August 2007, Pages 1257–1263
نویسندگان
, ,