کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
512758 866426 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effective condition number for weighted linear least squares problems and applications to the Trefftz method
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Effective condition number for weighted linear least squares problems and applications to the Trefftz method
چکیده انگلیسی

In [27], the effective condition number Cond_eff is developed for the linear least squares problem. In this paper, we extend the effective condition number for weighted linear least squares problem with both full rank and rank-deficient cases. We apply the effective condition number to the collocation Trefftz method (CTM) [29] for Laplace's equation with a crack singularity, to prove that Cond_eff =O(L) and Cond =O(L1/2(2)L), where L is the number of singular particular solutions used. The Cond grows exponentially as L   increases, but Cond_eff is only O(L). The small effective condition number explains well the high accuracy of the TM solution, but the huge Cond cannot.


► For weighted linear least squares problems, effective condition numbers Cond_eff are explored.
► The extremely accurate leading coefficient of Motz's problem is explained by very small Cond_eff.
► The effective condition number may become a new trend of stability analysis of numerical PDE.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Analysis with Boundary Elements - Volume 36, Issue 1, January 2012, Pages 53–62
نویسندگان
, , , ,