کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5128009 1489372 2017 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Accurate state estimation of stiff continuous-time stochastic models in chemical and other engineering
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Accurate state estimation of stiff continuous-time stochastic models in chemical and other engineering
چکیده انگلیسی

This paper presents two square-root accurate continuous-discrete extended Kalman filters designed for estimating stiff continuous-time stochastic models. These methods are grounded in the nested implicit Runge-Kutta formulas of orders 4 and 6. The implemented automatic local and global error control mechanisms raise the accuracy of state estimation and make the novel techniques more effective than the traditional extended Kalman filter (EKF) based on the Euler-Maruyama discretization and other existing nonlinear Kalman-like algorithms. The designed state estimators are examined numerically on the stochastic Oregonator model, which is a famous stiff example in chemical engineering. The superiority of our sixth-order method is confirmed in this experiment. In addition, we reveal such a counterintuitive result that the traditional EKF may outperform the contemporary advanced cubature and unscented Kalman filters both in the accuracy and in the efficiency of state estimation when applied to stiff continuous-time stochastic models in chemical and other engineering.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematics and Computers in Simulation - Volume 142, December 2017, Pages 62-81
نویسندگان
, ,