کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
512864 | 866435 | 2011 | 11 صفحه PDF | دانلود رایگان |

Symmetric and non-symmetric Galerkin formulations are presented for the coupling of a finite element modelled interior region to a boundary integral supported exterior region for the two-dimensional steady state exterior Stokes problem. Both single and double-layer hydrodynamic potentials are used allowing a well conditioned symmetric matrix structure for the entire interior–exterior, velocity–pressure system when the exterior velocity boundary integral equation (VBIE) is augmented by a traction boundary integral equation (TBIE) with the pressure determined everywhere purely through the imposition of the divergence-free velocity condition. Corresponding non-symmetric formulations are obtained by additionally discretizing an associated pressure boundary integral equation (PBIE), where the associated kernel functions have singularities an order higher than in the VBIE, with a simple regularization of the new hyper-singular pressure kernel. Comparable solution convergence with mesh refinement for the symmetric and non-symmetric schemes is shown for stabilized and mixed velocity–pressure conforming finite element pairs using Lagrangian shape functions.
Journal: Engineering Analysis with Boundary Elements - Volume 35, Issue 8, August 2011, Pages 959–969