کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
513010 866444 2011 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems
چکیده انگلیسی

We investigate two algorithms involving the relaxation of either the given Dirichlet data (boundary temperatures) or the prescribed Neumann data (normal heat fluxes) on the over-specified boundary in the case of the alternating iterative algorithm of Kozlov et al. [26] applied to two-dimensional steady-state heat conduction Cauchy problems, i.e. Cauchy problems for the Laplace equation. The two mixed, well-posed and direct problems corresponding to each iteration of the numerical procedure are solved using a meshless method, namely the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method. For each direct problem considered, the optimal value of the regularization parameter is chosen according to the generalized cross-validation (GCV) criterion. The iterative MFS algorithms with relaxation are tested for Cauchy problems associated with the Laplace operator in various two-dimensional geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Analysis with Boundary Elements - Volume 35, Issue 3, March 2011, Pages 415–429
نویسندگان
,