کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
513308 | 866466 | 2010 | 15 صفحه PDF | دانلود رایگان |

We investigate a meshless method for the stable and accurate solution of inverse problems associated with two-dimensional Helmholtz-type equations in the presence of boundary singularities. The governing equation and boundary conditions are discretized by the method of fundamental solutions (MFS). The existence of boundary singularities affects adversely the accuracy and convergence of standard numerical methods. Solutions to such problems and/or their corresponding derivatives may have unbounded values in the vicinity of the singularity. Moreover, when dealing with inverse problems, the stability of solutions is a key issue and this is usually taken into account by employing a regularization method. These difficulties are overcome by combining the Tikhonov regularization method (TRM) with the subtraction from the original MFS solution of the corresponding singular solutions, without an appreciable increase in the computational effort and at the same time keeping the same MFS discretization. Three examples for both the Helmholtz and the modified Helmholtz equations are carefully investigated.
Journal: Engineering Analysis with Boundary Elements - Volume 34, Issue 3, March 2010, Pages 274–288