کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
513671 866507 2006 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Complex variable boundary integral method for linear viscoelasticity: Part II—application to problems involving circular boundaries
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Complex variable boundary integral method for linear viscoelasticity: Part II—application to problems involving circular boundaries
چکیده انگلیسی

Complex variable integral equations for linear viscoelasticity derived in Part I [Huang Y, Mogilevskaya SG, Crouch SL. Complex variable boundary integral method for linear viscoelasticity. Part I—basic formulations. Eng Anal Bound Elem 2006; in press, doi:10.1016/j.enganabound.2005.12.007.] are employed to solve the problem of an infinite viscoelastic plane containing a circular hole. The viscoelastic material behaves as a Boltzmann model in shear and its bulk response is elastic. Constant or time-dependent stresses are applied at the boundary of the hole, or, if desired, at infinity. Time-dependent variables on the circular boundary (displacements or tractions in the direct formulation of the complex variable boundary integral method or unknown complex density functions in the indirect formulations) are represented by truncated complex Fourier series with time-dependent coefficients and all the space integrals involved are evaluated analytically. Analytical Laplace transform and its inversion are adopted to accomplish the evaluation of the associated time convolutions. Several examples are given to demonstrate the validity and reliability of the method. Generalization of the approach to the problems with multiple holes is discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Analysis with Boundary Elements - Volume 30, Issue 12, December 2006, Pages 1057–1068
نویسندگان
, , ,