کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
515067 866945 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automatic generic document summarization based on non-negative matrix factorization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Automatic generic document summarization based on non-negative matrix factorization
چکیده انگلیسی

In existing unsupervised methods, Latent Semantic Analysis (LSA) is used for sentence selection. However, the obtained results are less meaningful, because singular vectors are used as the bases for sentence selection from given documents, and singular vector components can have negative values. We propose a new unsupervised method using Non-negative Matrix Factorization (NMF) to select sentences for automatic generic document summarization. The proposed method uses non-negative constraints, which are more similar to the human cognition process. As a result, the method selects more meaningful sentences for generic document summarization than those selected using LSA.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Processing & Management - Volume 45, Issue 1, January 2009, Pages 20–34
نویسندگان
, , , ,