کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
515537 867041 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combination of modified BPNN algorithms and an efficient feature selection method for text categorization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Combination of modified BPNN algorithms and an efficient feature selection method for text categorization
چکیده انگلیسی

This paper proposes new modified methods for back propagation neural networks and uses semantic feature space to improve categorization performance and efficiency. The standard back propagation neural network (BPNN) has the drawbacks of slow learning and getting trapped in local minima, leading to a network with poor performance and efficiency. In this paper, we propose two methods to modify the standard BPNN and adopt the semantic feature space (SFS) method to reduce the number of dimensions as well as construct latent semantics between terms. The experimental results show that the modified methods enhanced the performance of the standard BPNN and were more efficient than the standard BPNN. The SFS method cannot only greatly reduce the dimensionality, but also enhances performance and can therefore be used to further improve text categorization systems precisely and efficiently.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Processing & Management - Volume 45, Issue 3, May 2009, Pages 329–340
نویسندگان
, ,