کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
515577 867046 2008 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hierarchical learning strategy in semantic relation extraction
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Hierarchical learning strategy in semantic relation extraction
چکیده انگلیسی

This paper proposes a novel hierarchical learning strategy to deal with the data sparseness problem in semantic relation extraction by modeling the commonality among related classes. For each class in the hierarchy either manually predefined or automatically clustered, a discriminative function is determined in a top-down way. As the upper-level class normally has much more positive training examples than the lower-level class, the corresponding discriminative function can be determined more reliably and guide the discriminative function learning in the lower-level one more effectively, which otherwise might suffer from limited training data. In this paper, two classifier learning approaches, i.e. the simple perceptron algorithm and the state-of-the-art Support Vector Machines, are applied using the hierarchical learning strategy. Moreover, several kinds of class hierarchies either manually predefined or automatically clustered are explored and compared. Evaluation on the ACE RDC 2003 and 2004 corpora shows that the hierarchical learning strategy much improves the performance on least- and medium-frequent relations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Processing & Management - Volume 44, Issue 3, May 2008, Pages 1008–1021
نویسندگان
, , , ,