کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
517115 867417 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inferring characteristic phenotypes via class association rule mining in the bone dysplasia domain
ترجمه فارسی عنوان
شناسایی فنوتیپ های مشخص شده از طریق انجمن رده بندی انجمن در زمینه دامنه استخوانی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• Definition and a novel mining approach for characteristic phenotypes.
• Class association rule mining algorithm on labelled data.
• Automatic and human validation of the algorithm on skeletal dysplasia data.
• Discussion on standard vs. class association rule mining algorithms.

Finding, capturing and describing characteristic features represents a key aspect in disorder definition, diagnosis and management. This process is particularly challenging in the case of rare disorders, due to the sparse nature of data and expertise. From a computational perspective, finding characteristic features is associated with some additional major challenges, such as formulating a computationally tractable definition, devising appropriate inference algorithms or defining sound validation mechanisms. In this paper we aim to deal with each of these problems in the context provided by the skeletal dysplasia domain. We propose a clear definition for characteristic phenotypes, we experiment with a novel, class association rule mining algorithm and we discuss our lessons learned from both an automatic and human-based validation of our approach.

Figure optionsDownload high-quality image (101 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomedical Informatics - Volume 48, April 2014, Pages 73–83
نویسندگان
, , , ,