کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
517539 867462 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cross-generation and cross-laboratory predictions of Affymetrix microarrays by rank-based methods
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Cross-generation and cross-laboratory predictions of Affymetrix microarrays by rank-based methods
چکیده انگلیسی

Past experiments of the popular Affymetrix (Affy) microarrays have accumulated a huge amount of public data sets. To apply them for more wide studies, the comparability across generations and experimental environments is an important research topic. This paper particularly investigates the issue of cross-generation/laboratory predictions. That is, whether models built upon data of one generation (laboratory) can differentiate data of another. We consider eight public sets of three cancers. They are from different laboratories and are across various generations of Affy human microarrays. Each cancer has certain subtypes, and we investigate if a model trained from one set correctly differentiates another. We propose a simple rank-based approach to make data from different sources more comparable. Results show that it leads to higher prediction accuracy than using expression values. We further investigate normalization issues in preparing training/testing data. In addition, we discuss some pitfalls in evaluating cross-generation/laboratory predictions. To use data from various sources one must be cautious on some important but easily neglected steps.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomedical Informatics - Volume 41, Issue 4, August 2008, Pages 570–579
نویسندگان
, , , , , , ,