کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
517681 867490 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feature selection techniques for maximum entropy based biomedical named entity recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Feature selection techniques for maximum entropy based biomedical named entity recognition
چکیده انگلیسی

Named entity recognition is an extremely important and fundamental task of biomedical text mining. Biomedical named entities include mentions of proteins, genes, DNA, RNA, etc which often have complex structures, but it is challenging to identify and classify such entities. Machine learning methods like CRF, MEMM and SVM have been widely used for learning to recognize such entities from an annotated corpus. The identification of appropriate feature templates and the selection of the important feature values play a very important role in the success of these methods. In this paper, we provide a study on word clustering and selection based feature reduction approaches for named entity recognition using a maximum entropy classifier. The identification and selection of features are largely done automatically without using domain knowledge. The performance of the system is found to be superior to existing systems which do not use domain knowledge.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomedical Informatics - Volume 42, Issue 5, October 2009, Pages 905–911
نویسندگان
, , ,