کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
518060 | 867554 | 2015 | 17 صفحه PDF | دانلود رایگان |
• Homogenized description of streaming potential in porous media is obtained.
• Domain reconstruction achieved by an octree and quadtree strategy.
• Streaming potential is evaluated numerically through a current electroneutrality constraint.
We quantify the pressure-driven electrokinetic transport of electrolytes in porous media through a matched asymptotic expansion based method to obtain a homogenized description of the upscaled transport. The pressure driven flow of aqueous electrolytes over charged surfaces leads to the generation of an induced electric potential, commonly termed as the streaming potential. We derive an expression for the modified permeability tensor, K↔eff, which is analogous to the Darcy permeability tensor with due accounting for the induced streaming potential. The porous media herein are modeled as spatially periodic. The modified permeability tensor is obtained for both topographically simple and complex domains by enforcing a zero net global current. Towards resolving the complicated details of the porous medium in a computationally efficient framework, the domain identification and reconstruction of the geometries are performed using adaptive quadtree (in 2D) and octree (in 3D) algorithms, which allows one to resolve the solid–liquid interface as per the desired level of resolution. We discuss the influence of the induced streaming potential on the modification of the Darcy law in connection to transport processes through porous plugs, clays and soils by considering a case-study on Berea sandstone.
Figure optionsDownload as PowerPoint slide
Journal: Journal of Computational Physics - Volume 300, 1 November 2015, Pages 53–69