کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
518242 | 867570 | 2014 | 16 صفحه PDF | دانلود رایگان |
The Gross–Pitaevskii equation is the model equation of the single-particle wave function in a Bose–Einstein condensation. A computation difficulty of the Gross–Pitaevskii equation comes from the semiclassical problem in supercritical case. In this paper, we apply a diffeomorphism to transform the original one-dimensional Gross–Pitaevskii equation into a modified equation. The adaptive grids are constructed through the interpolating wavelet method. Then, we use the time-splitting finite difference method with the wavelet-adaptive grids to solve the modified Gross–Pitaevskii equation, where the approximation to the second-order derivative is given by the Lagrange interpolation method. At last, the numerical results are given. It is shown that the obtained time-splitting finite difference method with the wavelet-adaptive grids is very efficient for solving the one-dimensional semiclassical Gross–Pitaevskii equation in supercritical case and it is suitable to deal with the local high oscillation of the solution.
Journal: Journal of Computational Physics - Volume 267, 15 June 2014, Pages 146–161