کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
518242 867570 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Time-splitting finite difference method with the wavelet-adaptive grids for semiclassical Gross–Pitaevskii equation in supercritical case
ترجمه فارسی عنوان
روش تقسیم زمانی تقسیم زمانی با شبکه های پذیرش موجک برای معادله گرسا پیتاوفسکی نیم کلاسیک در مورد فوق بحرانی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی

The Gross–Pitaevskii equation is the model equation of the single-particle wave function in a Bose–Einstein condensation. A computation difficulty of the Gross–Pitaevskii equation comes from the semiclassical problem in supercritical case. In this paper, we apply a diffeomorphism to transform the original one-dimensional Gross–Pitaevskii equation into a modified equation. The adaptive grids are constructed through the interpolating wavelet method. Then, we use the time-splitting finite difference method with the wavelet-adaptive grids to solve the modified Gross–Pitaevskii equation, where the approximation to the second-order derivative is given by the Lagrange interpolation method. At last, the numerical results are given. It is shown that the obtained time-splitting finite difference method with the wavelet-adaptive grids is very efficient for solving the one-dimensional semiclassical Gross–Pitaevskii equation in supercritical case and it is suitable to deal with the local high oscillation of the solution.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 267, 15 June 2014, Pages 146–161
نویسندگان
, ,