کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
518597 | 867605 | 2013 | 12 صفحه PDF | دانلود رایگان |

In this work a simple method to enforce the positivity-preserving property for general high-order conservative schemes is proposed for solving compressible Euler equations. The method detects critical numerical fluxes which may lead to negative density and pressure, and for such critical fluxes imposes a simple flux limiter by combining the high-order numerical flux with the first-order Lax–Friedrichs flux to satisfy a sufficient condition for preserving positivity. Though an extra time-step size condition is required to maintain the formal order of accuracy, it is less restrictive than those in previous works. A number of numerical examples suggest that this method, when applied on an essentially non-oscillatory scheme, can be used to prevent positivity failure when the flow involves vacuum or near vacuum and very strong discontinuities.
Journal: Journal of Computational Physics - Volume 242, 1 June 2013, Pages 169–180