کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
518714 867609 2013 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optical tomography reconstruction algorithm with the finite element method: An optimal approach with regularization tools
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Optical tomography reconstruction algorithm with the finite element method: An optimal approach with regularization tools
چکیده انگلیسی


• New strategies to improve the accuracy of the reconstruction through mesh and finite element parameterization.
• Use of gradient filtering through an alternative inner product within the adjoint method.
• An integral form of the cost function is used to make the reconstruction compatible with all finite element formulations, continuous and discontinuous.
• Gradient-based algorithm with the adjoint method is used for the reconstruction.

Optical tomography is mathematically treated as a non-linear inverse problem where the optical properties of the probed medium are recovered through the minimization of the errors between the experimental measurements and their predictions with a numerical model at the locations of the detectors. According to the ill-posed behavior of the inverse problem, some regularization tools must be performed and the Tikhonov penalization type is the most commonly used in optical tomography applications. This paper introduces an optimized approach for optical tomography reconstruction with the finite element method. An integral form of the cost function is used to take into account the surfaces of the detectors and make the reconstruction compatible with all finite element formulations, continuous and discontinuous. Through a gradient-based algorithm where the adjoint method is used to compute the gradient of the cost function, an alternative inner product is employed for preconditioning the reconstruction algorithm. Moreover, appropriate re-parameterization of the optical properties is performed. These regularization strategies are compared with the classical Tikhonov penalization one. It is shown that both the re-parameterization and the use of the Sobolev cost function gradient are efficient for solving such an ill-posed inverse problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 251, 15 October 2013, Pages 461–479
نویسندگان
, , ,