کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
518728 867611 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A quantitative comparison between C0C0 and C1C1 elements for solving the Cahn–Hilliard equation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A quantitative comparison between C0C0 and C1C1 elements for solving the Cahn–Hilliard equation
چکیده انگلیسی

The Cahn–Hilliard (CH) equation is a time-dependent fourth-order partial differential equation (PDE). When solving the CH equation via the finite element method (FEM), the domain is discretized by C1C1-continuous basis functions or the equation is split into a pair of second-order PDEs, and discretized via C0C0-continuous basis functions. In the current work, a quantitative comparison between C1C1 Hermite and C0C0 Lagrange elements is carried out using a continuous Galerkin FEM formulation. The different discretizations are evaluated using the method of manufactured solutions solved with Newton’s method and Jacobian-Free Newton Krylov. It is found that the use of linear Lagrange elements provides the fastest computation time for a given number of elements, while the use of cubic Hermite elements provides the lowest error. The results offer a set of benchmarks to consider when choosing basis functions to solve the CH equation. In addition, an example of microstructure evolution demonstrates the different types of elements for a traditional phase-field model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 236, 1 March 2013, Pages 74–80
نویسندگان
, , , , , , ,