کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
518819 867616 2008 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ontology-enhanced automatic chief complaint classification for syndromic surveillance
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Ontology-enhanced automatic chief complaint classification for syndromic surveillance
چکیده انگلیسی

Emergency department free-text chief complaints (CCs) are a major data source for syndromic surveillance. CCs need to be classified into syndromic categories for subsequent automatic analysis. However, the lack of a standard vocabulary and high-quality encodings of CCs hinder effective classification. This paper presents a new ontology-enhanced automatic CC classification approach. Exploiting semantic relations in a medical ontology, this approach is motivated to address the CC vocabulary variation problem in general and to meet the specific need for a classification approach capable of handling multiple sets of syndromic categories. We report an experimental study comparing our approach with two popular CC classification methods using a real-world dataset. This study indicates that our ontology-enhanced approach performs significantly better than the benchmark methods in terms of sensitivity, F measure, and F2 measure.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomedical Informatics - Volume 41, Issue 2, April 2008, Pages 340–356
نویسندگان
, , , , ,