کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
518898 867623 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Direct classification of high-dimensional data in low-dimensional projected feature spaces—Comparison of several classification methodologies
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Direct classification of high-dimensional data in low-dimensional projected feature spaces—Comparison of several classification methodologies
چکیده انگلیسی

Previously, we introduced a distance (similarity)-based mapping for the visualization of high-dimensional patterns and their relative relationships. The mapping preserves exactly the original distances from all points to any two reference patterns in a special two-dimensional coordinate system, the relative distance plane (RDP). We extend the RDP mapping’s applicability from visualization to classification. Several of the classifiers use the RDP directly. These include the standard linear discriminant analysis (LDA), nearest neighbor classifiers, and a transvariation probabilities-based classification method that is natural in the RDP. Several reference directions can also be combined to create new coordinate systems in which arbitrary classifiers can be developed. We obtain increased confidence in the classification results by cycling through all possible reference pairs and computing a misclassification-based weighted accuracy. The classification results on several high-dimensional biomedical datasets are compared.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomedical Informatics - Volume 40, Issue 2, April 2007, Pages 131–138
نویسندگان
, , ,