کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
519070 | 867638 | 2014 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Many partial differential equations (PDEs) can be written as a multi-symplectic Hamiltonian system, which has three local conservation laws, namely multi-symplectic conservation law, local energy conservation law and local momentum conservation law. In this paper, we give several systematic methods for discretizing general multi-symplectic formulations of Hamiltonian PDEs, including a local energy-preserving algorithm, a class of global energy-preserving methods and a local momentum-preserving algorithm. The methods are illustrated by the nonlinear Schrödinger equation and the Korteweg–de Vries equation. Numerical experiments are presented to demonstrate the conservative properties of the proposed numerical methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 279, 15 December 2014, Pages 80–102
Journal: Journal of Computational Physics - Volume 279, 15 December 2014, Pages 80–102
نویسندگان
Yuezheng Gong, Jiaxiang Cai, Yushun Wang,