کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
519764 867681 2012 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solution of the scalar wave equation over very long distances using nonlinear solitary waves: Relation to finite difference methods
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Solution of the scalar wave equation over very long distances using nonlinear solitary waves: Relation to finite difference methods
چکیده انگلیسی

The linear wave equation represents the basis of many linear electromagnetic and acoustic propagation problems. Features that a computational model must have, to capture large scale realistic effects (for over the horizon or “OTH” radar communication, for example), include propagation of short waves with scattering and partial absorption by complex topography. For these reasons, it is not feasible to use Green’s Function or any simple integral method, which neglects these intermediate effects and requires a known propagation function between source and observer. In this paper, we describe a new method for propagating such short waves over long distances, including intersecting scattered waves. The new method appears to be much simpler than conventional high frequency schemes: Lagrangian “particle” based approaches, such as “ray tracing” become very complex in 3-D, especially for waves that may be expanding, or even intersecting. The other high frequency scheme in common use, the Eikonal, also has difficulty with intersecting waves.Our approach, based on nonlinear solitary waves concentrated about centroid surfaces of physical wave features, is related to that of Whitham [1], which involves solving wave fronts propagating on characteristics. Then, the evolving electromagnetic (or acoustic) field can be approximated as a collection of propagating co-dimension one surfaces (for example, 2-D surfaces in three dimensions). This approach involves solving propagation equations discretely on an Eulerian grid to approximate the linear wave equation. However, to propagate short waves over long distances, conventional Eulerian numerical methods, which attempt to resolve the structure of each wave, require far too many grid cells and are not feasible on current or foreseeable computers. Instead, we employ an “extended” wave equation that captures the important features of the propagating waves. This method is first formulated at the partial differential equation (PDE) level, as a wave equation with an added “confining” term that involves both a positive and a negative dissipation. Once we have the stable PDE, the discrete formulation is simply a multidimensional PDE with (stable) perturbations caused by the discretization. The resulting discrete solution can then be low order and very simple and yet remain stable over arbitrarily long times. When discretized and solved on an Eulerian grid, this new method allows far coarser grids than required by conventional resolution considerations, while still accounting for the effects of varying atmospheric and topographic features. An important point is that the new method is in the same form as conventional discrete wave equation methods. However, the conventional solution eventually decays, and only the “intermediate asymptotic” solution can be used. Simply by adding an extra term, we show that a nontrivial true asymptotic solution can be obtained. A similar solitary wave based approach has been used successfully in a different problem (involving “Vorticity Confinement”), for a number of years.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 231, Issue 19, 1 August 2012, Pages 6306–6322
نویسندگان
, ,