کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
519881 867688 2015 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A second-order Cartesian method for the simulation of electropermeabilization cell models
ترجمه فارسی عنوان
روش دکارتی دوم مرتبه دوم برای شبیه سازی مدل سلول های الکتروپارائیلیزاسیون
کلمات کلیدی
تفاوت های محدود در شبکه های دکارتی، شرایط انتقال اینترفیس، خطای تقسیم، مدل سازی سلول
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی

In this paper, we present a new finite differences method to simulate electropermeabilization models, like the model of Neu and Krassowska or the recent model of Kavian et al. These models are based on the evolution of the electric potential in a cell embedded in a conducting medium. The main feature lies in the transmission of the voltage potential across the cell membrane: the jump of the potential is proportional to the normal flux thanks to the well-known Kirchoff law. An adapted scheme is thus necessary to accurately simulate the voltage potential in the whole cell, notably at the membrane separating the cell from the outer medium. We present a second-order finite differences scheme in the spirit of the method introduced by Cisternino and Weynans for elliptic problems with immersed interfaces. This is a Cartesian grid method based on the accurate discretization of the fluxes at the interface, through the use of additional interface unknowns. The main novelty of our present work lies in the fact that the jump of the potential is proportional to the flux, and therefore is not explicitly known. The original use of interface unknowns makes it possible to discretize the transmission conditions with enough accuracy to obtain a second-order spatial convergence. We prove the second-order spatial convergence in the stationary linear one-dimensional case, and the first-order temporal convergence for the dynamical non-linear model in one dimension. We then perform numerical experiments in two dimensions that corroborate these results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 292, 1 July 2015, Pages 114–140
نویسندگان
, , ,