کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
520107 867696 2012 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysis and compression of six-dimensional gyrokinetic datasets using higher order singular value decomposition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Analysis and compression of six-dimensional gyrokinetic datasets using higher order singular value decomposition
چکیده انگلیسی

Higher order singular value decomposition (HOSVD) is explored as a tool for analyzing and compressing gyrokinetic data. An efficient numerical implementation of an HOSVD algorithm is described. HOSVD is used to analyze the full six-dimensional (three spatial, two velocity space, and time dimensions) gyrocenter distribution function from gyrokinetic simulations of ion temperature gradient, electron temperature gradient, and trapped electron mode driven turbulence. The HOSVD eigenvalues for the velocity space coordinates decay very rapidly, indicating that only a few structures in velocity space can capture the most important dynamics. In almost all of the cases studied, HOSVD extracts parallel velocity space structures which are very similar to orthogonal polynomials. HOSVD is also used to compress gyrokinetic datasets, an application in which it is shown to significantly outperform the more commonly used singular value decomposition. It is shown that the effectiveness of the HOSVD compression improves as the dimensionality of the dataset increases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 231, Issue 11, 1 June 2012, Pages 4234–4256
نویسندگان
, , ,