کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
520192 867700 2009 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantum-corrected drift-diffusion models: Solution fixed point map and finite element approximation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Quantum-corrected drift-diffusion models: Solution fixed point map and finite element approximation
چکیده انگلیسی

This article deals with the analysis of the functional iteration, denoted Generalized Gummel Map (GGM), proposed in [C. de Falco, A.L. Lacaita, E. Gatti, R. Sacco, Quantum-Corrected Drift-Diffusion Models for Transport in Semiconductor Devices, J. Comp. Phys. 204 (2) (2005) 533–561] for the decoupled solution of the Quantum Drift-Diffusion (QDD) model. The solution of the problem is characterized as being a fixed point of the GGM, which permits the establishment of a close link between the theoretical existence analysis and the implementation of a numerical tool, which was lacking in previous non-constructive proofs [N.B. Abdallah, A. Unterreiter, On the stationary quantum drift-diffusion model, Z. Angew. Math. Phys. 49 (1998) 251–275, R. Pinnau, A. Unterreiter, The stationary current–voltage characteristics of the quantum drift-diffusion model, SIAM J. Numer. Anal. 37 (1) (1999) 211–245]. The finite element approximation of the GGM is illustrated, and the main properties of the numerical fixed point map (discrete maximum principle and order of convergence) are discussed. Numerical results on realistic nanoscale devices are included to support the theoretical conclusions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 228, Issue 5, 20 March 2009, Pages 1770–1789
نویسندگان
, , ,