کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
520215 867702 2012 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Total-variation-diminishing implicit–explicit Runge–Kutta methods for the simulation of double-diffusive convection in astrophysics
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Total-variation-diminishing implicit–explicit Runge–Kutta methods for the simulation of double-diffusive convection in astrophysics
چکیده انگلیسی

We put forward the use of total-variation-diminishing (or more generally, strong stability preserving) implicit–explicit Runge–Kutta methods for the time integration of the equations of motion associated with the semiconvection problem in the simulation of stellar convection. The fully compressible Navier–Stokes equation, augmented by continuity and total energy equations, and an equation of state describing the relation between the thermodynamic quantities, is semi-discretized in space by essentially non-oscillatory schemes and dissipative finite difference methods. It is subsequently integrated in time by Runge–Kutta methods which are constructed such as to preserve the total variation diminishing (or strong stability) property satisfied by the spatial discretization coupled with the forward Euler method. We analyse the stability, accuracy and dissipativity of the time integrators and demonstrate that the most successful methods yield a substantial gain in computational efficiency as compared to classical explicit Runge–Kutta methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 231, Issue 9, 1 May 2012, Pages 3561–3586
نویسندگان
, , , ,