کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
520414 | 867717 | 2013 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a fourth-order compact and energy conservative difference scheme is proposed for solving the two-dimensional nonlinear Schrödinger equation with periodic boundary condition and initial condition, and the optimal convergent rate, without any restriction on the grid ratio, at the order of O(h4+τ2)O(h4+τ2) in the discrete L2L2-norm with time step ττ and mesh size h is obtained. Besides the standard techniques of the energy method, a new technique and some important lemmas are proposed to prove the high order convergence. In order to avoid the outer iteration in implementation, a linearized compact and energy conservative difference scheme is derived. Numerical examples are given to support the theoretical analysis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 243, 15 June 2013, Pages 382–399
Journal: Journal of Computational Physics - Volume 243, 15 June 2013, Pages 382–399
نویسندگان
Tingchun Wang, Boling Guo, Qiubin Xu,