کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
520768 867735 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A stability analysis of a real space split operator method for the Klein–Gordon equation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A stability analysis of a real space split operator method for the Klein–Gordon equation
چکیده انگلیسی

We carry out a stability analysis for the real space split operator method for the propagation of the time-dependent Klein–Gordon equation that has been proposed in Ruf et al. [M. Ruf, H. Bauke, C.H. Keitel, A real space split operator method for the Klein–Gordon equation, Journal of Computational Physics 228 (24) (2009) 9092–9106, doi:10.1016/j.jcp.2009.09.012]. The region of algebraic stability is determined analytically by means of a von-Neumann stability analysis for systems with homogeneous scalar and vector potentials. Algebraic stability implies convergence of the real space split operator method for smooth absolutely integrable initial conditions. In the limit of small spatial grid spacings h in each of the d spatial dimensions and small temporal steps τ  , the stability condition becomes h/τ>dc for second order finite differences and 3h/(2τ)>dc for fourth order finite differences, respectively, with c denoting the speed of light. Furthermore, we demonstrate numerically that the stability region for systems with inhomogeneous potentials coincides almost with the region of algebraic stability for homogeneous potentials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 231, Issue 2, 20 January 2012, Pages 454–464
نویسندگان
, ,