کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
520811 | 867736 | 2011 | 12 صفحه PDF | دانلود رایگان |

This study proposes a new forcing scheme suitable for massively-parallel finite-difference simulations of stationary isotropic turbulence. The proposed forcing scheme, named reduced-communication forcing (RCF), is based on the same idea as the conventional large-scale forcing scheme, but requires much less data communication, leading to a high parallel efficiency. It has been confirmed that the RCF scheme works intrinsically in the same manner as the conventional large-scale forcing scheme. Comparisons have revealed that a fourth-order finite-difference model run in combination with the RCF scheme (FDM-RCF) is as good as a spectral model, while requiring less computational costs. For the range 80 < Reλ < 540, where Reλ is the Taylor microscale-based Reynolds number, large computations using the FDM-RCF scheme show that the Reynolds dependences of skewness and flatness factors have similar power-laws as found in previous studies.
Journal: Journal of Computational Physics - Volume 230, Issue 10, 10 May 2011, Pages 4088–4099