کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
520885 867740 2011 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
High-order, finite-volume methods in mapped coordinates
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
High-order, finite-volume methods in mapped coordinates
چکیده انگلیسی

We present an approach for constructing finite-volume methods for flux-divergence forms to any order of accuracy defined as the image of a smooth mapping from a rectangular discretization of an abstract coordinate space. Our approach is based on two ideas. The first is that of using higher-order quadrature rules to compute the flux averages over faces that generalize a method developed for Cartesian grids to the case of mapped grids. The second is a method for computing the averages of the metric terms on faces such that freestream preservation is automatically satisfied. We derive detailed formulas for the cases of fourth-order accurate discretizations of linear elliptic and hyperbolic partial differential equations. For the latter case, we combine the method so derived with Runge–Kutta time discretization and demonstrate how to incorporate a high-order accurate limiter with the goal of obtaining a method that is robust in the presence of discontinuities and underresolved gradients. For both elliptic and hyperbolic problems, we demonstrate that the resulting methods are fourth-order accurate for smooth solutions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 230, Issue 8, 20 April 2011, Pages 2952–2976
نویسندگان
, , , ,