کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
520887 867740 2011 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stabilized non-dissipative approximations of Euler equations in generalized curvilinear coordinates
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Stabilized non-dissipative approximations of Euler equations in generalized curvilinear coordinates
چکیده انگلیسی

We discuss stabilization strategies for finite-difference approximations of the compressible Euler equations in generalized curvilinear coordinates that do not rely on explicit upwinding or filtering of the physical variables. Our approach rather relies on a skew-symmetric-like splitting of the convective derivatives, that guarantees preservation of kinetic energy in the semi-discrete, low-Mach-number limit. A locally conservative formulation allows efficient implementation and easy incorporation into existing compressible flow solvers. The validity of the approach is tested for benchmark flow cases, including the propagation of a cylindrical vortex, and the head-on collision of two vortex dipoles. The tests support high accuracy and superior stability over conventional central discretization of the convective derivatives. The potential use for DNS/LES of turbulent compressible flows in complex geometries is discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 230, Issue 8, 20 April 2011, Pages 2997–3014
نویسندگان
,