کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
520887 | 867740 | 2011 | 18 صفحه PDF | دانلود رایگان |

We discuss stabilization strategies for finite-difference approximations of the compressible Euler equations in generalized curvilinear coordinates that do not rely on explicit upwinding or filtering of the physical variables. Our approach rather relies on a skew-symmetric-like splitting of the convective derivatives, that guarantees preservation of kinetic energy in the semi-discrete, low-Mach-number limit. A locally conservative formulation allows efficient implementation and easy incorporation into existing compressible flow solvers. The validity of the approach is tested for benchmark flow cases, including the propagation of a cylindrical vortex, and the head-on collision of two vortex dipoles. The tests support high accuracy and superior stability over conventional central discretization of the convective derivatives. The potential use for DNS/LES of turbulent compressible flows in complex geometries is discussed.
Journal: Journal of Computational Physics - Volume 230, Issue 8, 20 April 2011, Pages 2997–3014