کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
521103 | 867753 | 2008 | 15 صفحه PDF | دانلود رایگان |

We describe a particle position time advancement algorithm that is designed for use with several subgrid velocity reconstruction schemes used in LES/FDF methods, and potentially in other applications. These reconstruction schemes yield a subgrid velocity field with desirable divergence properties, but also with discontinuities across cell faces. Therefore, a conventional time advancement algorithm, such as second-order Runge–Kutta (RK2), does not perform as well as it does with a smooth velocity field. The algorithm that we describe, called Multi-Step RK2 (MRK2), builds upon RK2 by breaking up the time step into two or more substeps whenever a particle crosses one or more velocity discontinuities. When used in conjunction with the parabolic edge reconstruction method, MRK2 performs considerably better than RK2: both the final position of an advected particle, and the final area of a 2D infinitesimal area element are second-order accurate in time (as opposed to first-order accurate for RK2). Furthermore, MRK2 has the theoretical advantage that it better preserves the continuity of the mapping between initial and final particle positions.
Journal: Journal of Computational Physics - Volume 227, Issue 20, 20 October 2008, Pages 8792–8806