کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
521238 867759 2010 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Splitting multisymplectic integrators for Maxwell’s equations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Splitting multisymplectic integrators for Maxwell’s equations
چکیده انگلیسی

In the paper, we describe a novel kind of multisymplectic method for three-dimensional (3-D) Maxwell’s equations. Splitting the 3-D Maxwell’s equations into three local one-dimensional (LOD) equations, then applying a pair of symplectic Runge–Kutta methods to discretize each resulting LOD equation, it leads to splitting multisymplectic integrators. We say this kind of schemes to be LOD multisymplectic scheme (LOD-MS). The discrete conservation laws, convergence, dispersive relation, dissipation and stability are investigated for the schemes. Theoretical analysis shows that the schemes are unconditionally stable, non-dissipative, and of first order accuracy in time and second order accuracy in space. As a reduction, we also consider the application of LOD-MS to 2-D Maxwell’s equations. Numerical experiments match the theoretical results well. They illustrate that LOD-MS is not only efficient and simple in coding, but also has almost all the nature of multisymplectic integrators.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 229, Issue 11, 1 June 2010, Pages 4259–4278
نویسندگان
, , ,