کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
521351 867764 2010 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Diffusion front capturing schemes for a class of Fokker–Planck equations: Application to the relativistic heat equation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Diffusion front capturing schemes for a class of Fokker–Planck equations: Application to the relativistic heat equation
چکیده انگلیسی

In this research work we introduce and analyze an explicit conservative finite difference scheme to approximate the solution of initial-boundary value problems for a class of limited diffusion Fokker–Planck equations under homogeneous Neumann boundary conditions. We show stability and positivity preserving property under a Courant–Friedrichs–Lewy parabolic time step restriction. We focus on the relativistic heat equation as a model problem of the mentioned limited diffusion Fokker–Planck equations. We analyze its dynamics and observe the presence of a singular flux and an implicit combination of nonlinear effects that include anisotropic diffusion and hyperbolic transport. We present numerical approximations of the solution of the relativistic heat equation for a set of examples in one and two dimensions including continuous initial data that develops jump discontinuities in finite time. We perform the numerical experiments through a class of explicit high order accurate conservative and stable numerical schemes and a semi-implicit nonlinear Crank–Nicolson type scheme.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 229, Issue 7, 1 April 2010, Pages 2659–2674
نویسندگان
,