کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
521418 867767 2006 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solving the 3D MHD equilibrium equations in toroidal geometry by Newton’s method
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Solving the 3D MHD equilibrium equations in toroidal geometry by Newton’s method
چکیده انگلیسی

We describe a novel form of Newton’s method for computing 3D MHD equilibria. The method has been implemented as an extension to the hybrid spectral/finite-difference Princeton Iterative Equilibrium Solver (PIES) which normally uses Picard iteration on the full nonlinear MHD equilibrium equations. Computing the Newton functional derivative numerically is not feasible in a code of this type but we are able to do the calculation analytically in magnetic coordinates by considering the response of the plasma’s Pfirsch–Schlüter currents to small changes in the magnetic field. Results demonstrate a significant advantage over Picard iteration in many cases, including simple finite-β stellarator equilibria. The method shows promise in cases that are difficult for Picard iteration, although it is sensitive to resolution and imperfections in the magnetic coordinates, and further work is required to adapt it to the presence of magnetic islands and stochastic regions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 211, Issue 1, 1 January 2006, Pages 99–128
نویسندگان
, , ,