کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
521430 | 867767 | 2006 | 20 صفحه PDF | دانلود رایگان |

We present a second-order Godunov algorithm to solve time-dependent hyperbolic systems of conservation laws on irregular domains. Our approach is based on a formally consistent discretization of the conservation laws on a finite-volume grid obtained from intersecting the domain with a Cartesian grid. We address the small-cell stability problem associated with such methods by hybridizing our conservative discretization with a stable, nonconservative discretization at irregular control volumes, and redistributing the difference in the mass increments to nearby cells in a way that preserves stability and local conservation. The resulting method is second-order accurate in L1 for smooth problems, and is robust in the presence of large-amplitude discontinuities intersecting the irregular boundary.
Journal: Journal of Computational Physics - Volume 211, Issue 1, 1 January 2006, Pages 347–366