کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
521472 | 867769 | 2010 | 15 صفحه PDF | دانلود رایگان |

This paper presents an accurate and stable numerical scheme for computation of the first variation of the Dirichlet–Neumann operator in the context of Euler’s equations for ideal free-surface fluid flows. The Transformed Field Expansion methodology we use is not only numerically stable, but also employs a spectrally accurate Fourier/Chebyshev collocation method which delivers high-fidelity solutions. This implementation follows directly from the authors’ previous theoretical work on analyticity properties of functional variations of Dirichlet–Neumann operators. These variations can be computed in a number of ways, but we establish, via a variety of computational experiments, the superior effectiveness of our new approach as compared with another popular Boundary Perturbation algorithm (the method of Operator Expansions).
Journal: Journal of Computational Physics - Volume 229, Issue 3, 1 February 2010, Pages 906–920