کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
521642 867781 2009 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field
چکیده انگلیسی

This paper is concerned with the numerical approximation of the isothermal Euler equations for charged particles subject to the Lorentz force (the ‘Euler–Lorentz’ system). When the magnetic field is large, or equivalently, when the parameter εε representing the non-dimensional ion cyclotron frequency tends to zero, the so-called drift-fluid (or gyro-fluid) approximation is obtained. In this limit, the parallel motion relative to the magnetic field direction splits from perpendicular motion and is given implicitly by the constraint of zero total force along the magnetic field lines. In this paper, we provide a well-posed elliptic equation for the parallel velocity which in turn allows us to construct an Asymptotic-Preserving (AP) scheme for the Euler–Lorentz system. This scheme gives rise to both a consistent approximation of the Euler–Lorentz model when εε is finite and a consistent approximation of the drift limit when ε→0ε→0. Above all, it does not require any constraint on the space and time-steps related to the small value of εε. Numerical results are presented, which confirm the AP character of the scheme and its Asymptotic Stability.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 228, Issue 10, 1 June 2009, Pages 3540–3558
نویسندگان
, , , ,