کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
521658 867781 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A monolithic FEM-multigrid solver for non-isothermal incompressible flow on general meshes
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A monolithic FEM-multigrid solver for non-isothermal incompressible flow on general meshes
چکیده انگلیسی

We present special numerical simulation methods for non-isothermal incompressible viscous fluids which are based on LBB-stable FEM discretization techniques together with monolithic multigrid solvers. For time discretization, we apply the fully implicit Crank–Nicolson scheme of 2nd order accuracy while we utilize the high order Q2P1Q2P1 finite element pair for discretization in space which can be applied on general meshes together with local grid refinement strategies including hanging nodes. To treat the nonlinearities in each time step as well as for direct steady approaches, the resulting discrete systems are solved via a Newton method based on divided differences to calculate explicitly the Jacobian matrices. In each nonlinear step, the coupled linear subproblems are solved simultaneously for all quantities by means of a monolithic multigrid method with local multilevel pressure Schur complement smoothers of Vanka type. For validation and evaluation of the presented methodology, we perform the MIT benchmark 2001 [M.A. Christon, P.M. Gresho, S.B. Sutton, Computational predictability of natural convection flows in enclosures, in: First MIT Conference on Computational Fluid and Solid Mechanics, vol. 40, Elsevier, 2001, pp. 1465–1468] of natural convection flow in enclosures to compare our results with respect to accuracy and efficiency. Additionally, we simulate problems with temperature and shear dependent viscosity and analyze the effect of an additional dissipation term inside the energy equation. Moreover, we discuss how these FEM-multigrid techniques can be extended to monolithic approaches for viscoelastic flow problems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 228, Issue 10, 1 June 2009, Pages 3869–3881
نویسندگان
, , , ,