کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
522041 867807 2011 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimal Runge–Kutta smoothers for the p-multigrid discontinuous Galerkin solution of the 1D Euler equations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Optimal Runge–Kutta smoothers for the p-multigrid discontinuous Galerkin solution of the 1D Euler equations
چکیده انگلیسی

This work presents a family of original Runge–Kutta methods specifically designed to be effective relaxation schemes in the numerical solution of the steady state solution of purely advective problems with a high-order accurate discontinuous Galerkin space discretization and a p-multigrid solution algorithm. The design criterion for the construction of the Runge–Kutta methods here developed is different form the one traditionally used to derive optimal Runge–Kutta smoothers for the h-multigrid algorithm, which are designed in order to provide a uniform damping of the error modes in the high-frequency range only. The method here proposed is instead designed in order to provide a variable amount of damping of the error modes over the entire frequency spectrum. The performance of the proposed schemes is assessed in the solution of the steady state quasi one-dimensional Euler equations for two test cases of increasing difficulty. Some preliminary results showing the performance for multidimensional applications are also presented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 230, Issue 11, 20 May 2011, Pages 4153–4175
نویسندگان
, , ,