کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
522041 | 867807 | 2011 | 23 صفحه PDF | دانلود رایگان |

This work presents a family of original Runge–Kutta methods specifically designed to be effective relaxation schemes in the numerical solution of the steady state solution of purely advective problems with a high-order accurate discontinuous Galerkin space discretization and a p-multigrid solution algorithm. The design criterion for the construction of the Runge–Kutta methods here developed is different form the one traditionally used to derive optimal Runge–Kutta smoothers for the h-multigrid algorithm, which are designed in order to provide a uniform damping of the error modes in the high-frequency range only. The method here proposed is instead designed in order to provide a variable amount of damping of the error modes over the entire frequency spectrum. The performance of the proposed schemes is assessed in the solution of the steady state quasi one-dimensional Euler equations for two test cases of increasing difficulty. Some preliminary results showing the performance for multidimensional applications are also presented.
Journal: Journal of Computational Physics - Volume 230, Issue 11, 20 May 2011, Pages 4153–4175