کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
522250 867817 2011 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Symplectic and multisymplectic numerical methods for Maxwell’s equations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Symplectic and multisymplectic numerical methods for Maxwell’s equations
چکیده انگلیسی

In this paper, we compare the behaviour of one symplectic and three multisymplectic methods for Maxwell’s equations in a simple medium. This is a system of PDEs with symplectic and multisymplectic structures. We give a theoretical discussion of how some numerical methods preserve the discrete versions of the local and global conservation laws and verify this behaviour in numerical experiments. We also show that these numerical methods preserve the divergence. Furthermore, we extend the discussion on dispersion for (multi)symplectic methods applied to PDEs with one spatial dimension, to include anisotropy when applying (multi)symplectic methods to Maxwell’s equations in two spatial dimensions. Lastly, we demonstrate how varying the Courant–Friedrichs–Lewy (CFL) number can cause the (multi)symplectic methods in our comparison to behave differently, which can be explained by the study of backward error analysis for PDEs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 230, Issue 5, 1 March 2011, Pages 2076–2094
نویسندگان
, ,