کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
522252 867817 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A second-order discretization of the nonlinear Poisson–Boltzmann equation over irregular geometries using non-graded adaptive Cartesian grids
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A second-order discretization of the nonlinear Poisson–Boltzmann equation over irregular geometries using non-graded adaptive Cartesian grids
چکیده انگلیسی

In this paper we present a finite difference scheme for the discretization of the nonlinear Poisson–Boltzmann (PB) equation over irregular domains that is second-order accurate. The interface is represented by a zero level set of a signed distance function using Octree data structure, allowing a natural and systematic approach to generate non-graded adaptive grids. Such a method guaranties computational efficiency by ensuring that the finest level of grid is located near the interface. The nonlinear PB equation is discretized using finite difference method and several numerical experiments are carried which indicate the second-order accuracy of method. Finally the method is used to study the supercapacitor behaviour of porous electrodes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 230, Issue 5, 1 March 2011, Pages 2125–2140
نویسندگان
, , ,