کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
522464 867828 2007 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical schemes for three-dimensional irregular shape quantum dots over curvilinear coordinate systems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Numerical schemes for three-dimensional irregular shape quantum dots over curvilinear coordinate systems
چکیده انگلیسی

In this article, we present efficient and stable numerical schemes to simulate three-dimensional quantum dot with irregular shape, so that we can compute all the bound state energies and associated wave functions. A curvilinear coordinate system that fits the target quantum dot shape is first determined. Three finite difference discretizations of the Schrödinger equation are then developed on the original and the skewed curvilinear coordinate system. The resulting large-scale generalized eigenvalue systems are solved by a modified Jacobi–Davidson method. Intensive numerical experiments show that the scheme using both grid points on the original and skewed curvilinear coordinate system can converge to the eigenpairs quickly and stably with second-order accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 226, Issue 1, 10 September 2007, Pages 754–773
نویسندگان
, , ,