کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
522464 | 867828 | 2007 | 20 صفحه PDF | دانلود رایگان |

In this article, we present efficient and stable numerical schemes to simulate three-dimensional quantum dot with irregular shape, so that we can compute all the bound state energies and associated wave functions. A curvilinear coordinate system that fits the target quantum dot shape is first determined. Three finite difference discretizations of the Schrödinger equation are then developed on the original and the skewed curvilinear coordinate system. The resulting large-scale generalized eigenvalue systems are solved by a modified Jacobi–Davidson method. Intensive numerical experiments show that the scheme using both grid points on the original and skewed curvilinear coordinate system can converge to the eigenpairs quickly and stably with second-order accuracy.
Journal: Journal of Computational Physics - Volume 226, Issue 1, 10 September 2007, Pages 754–773