کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
522488 | 867830 | 2010 | 37 صفحه PDF | دانلود رایگان |

We propose a discretization method of a five-equation model with isobaric closure for the simulation of interfaces between compressible fluids. This numerical solver is a Lagrange–Remap scheme that aims at controlling the numerical diffusion of the interface between both fluids. This method does not involve any interface reconstruction procedure. The solver is equipped with built-in stability and consistency properties and is conservative with respect to mass, momentum, total energy and partial masses. This numerical scheme works with a very broad range of equations of state, including tabulated laws. Properties that ensure a good treatment of the Riemann invariants across the interface are proven. As a consequence, the numerical method does not create spurious pressure oscillations at the interface. We show one-dimensional and two-dimensional classic numerical tests. The results are compared with the approximate solutions obtained with the classic upwind Lagrange–Remap approach, and with experimental and previously published results of a reference test case.
Journal: Journal of Computational Physics - Volume 229, Issue 8, 20 April 2010, Pages 2773–2809