کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
522645 867840 2009 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimal block-tridiagonalization of matrices for coherent charge transport
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Optimal block-tridiagonalization of matrices for coherent charge transport
چکیده انگلیسی

Numerical quantum transport calculations are commonly based on a tight-binding formulation. A wide class of quantum transport algorithms require the tight-binding Hamiltonian to be in the form of a block-tridiagonal matrix. Here, we develop a matrix reordering algorithm based on graph partitioning techniques that yields the optimal block-tridiagonal form for quantum transport. The reordered Hamiltonian can lead to significant performance gains in transport calculations, and allows to apply conventional two-terminal algorithms to arbitrarily complex geometries, including multi-terminal structures. The block-tridiagonalization algorithm can thus be the foundation for a generic quantum transport code, applicable to arbitrary tight-binding systems. We demonstrate the power of this approach by applying the block-tridiagonalization algorithm together with the recursive Green’s function algorithm to various examples of mesoscopic transport in two-dimensional electron gases in semiconductors and graphene.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 228, Issue 23, 10 December 2009, Pages 8548–8565
نویسندگان
, ,