کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
522851 867873 2007 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical method satisfying the first two conservation laws for the Korteweg–de Vries equation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Numerical method satisfying the first two conservation laws for the Korteweg–de Vries equation
چکیده انگلیسی

In this paper, we develop a finite-volume scheme for the KdV equation which conserves both the momentum and energy. The main ingredient of the method is a numerical device we developed in recent years that enables us to construct numerical method for a PDE that also simulates its related equations. In the method, numerical approximations to both the momentum and energy are conservatively computed. The operator splitting approach is adopted in constructing the method in which the conservation and dispersion parts of the equation are alternatively solved; our numerical device is applied in solving the conservation part of the equation. The feasibility and stability of the method is discussed, which involves an important property of the method, the so-called Jensen condition. The truncation error of the method is analyzed, which shows that the method is second-order accurate. Finally, several numerical examples, including the Zabusky–Kruskal’s example, are presented to show the good stability property of the method for long-time numerical integration.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 227, Issue 1, 10 November 2007, Pages 376–399
نویسندگان
, ,