کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
522858 867873 2007 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The effect of the 2-D Laplacian operator approximation on the performance of finite-difference time-domain schemes for Maxwell’s equations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
The effect of the 2-D Laplacian operator approximation on the performance of finite-difference time-domain schemes for Maxwell’s equations
چکیده انگلیسی

The behavior of the finite-difference time-domain method (FDTD) is investigated with respect to the approximation of the two-dimensional Laplacian, associated with the curl–curl operator. Our analysis begins from the observation that in a two-dimensional space the Yee algorithm approximates the Laplacian operator via a strongly anisotropic 5-point approximation. It is demonstrated that with the aid of a transversely extended-curl operator any 9-point Laplacian can be mapped onto FDTD update equations. Our analysis shows that the mapping of an isotropic Laplacian approximation results in an isotropic and less dispersive FDTD scheme. The properties of the extended curl are further explored and it is proved that a unity Courant number can be achieved without the resulting scheme suffering from grid decoupling. Additionally, the case of a 25-point isotropic Laplacian is examined and it is shown that the corresponding scheme is fourth order accurate in space and exhibits isotropy up to sixth order. Representative numerical simulations are performed that validate the theoretically derived results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 227, Issue 1, 10 November 2007, Pages 513–536
نویسندگان
, , ,