کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
522870 | 867873 | 2007 | 21 صفحه PDF | دانلود رایگان |

A numerical method for integrating the equations describing a dynamically coupled system made of a fluid and cosmic-rays is developed. In smooth flows the effect of CR pressure is accounted for by modification of the characteristic equations and the energy exchange between cosmic-rays and the fluid, due to diffusive processes in configuration and momentum space, is modeled with a flux conserving method. Provided the shock acceleration efficiency as a function of the upstream conditions and shock Mach number, we show that the Riemann solver can be modified to take into account the cosmic-ray mediation without having to resolve the cosmic-ray induced substructure. Shocks are advanced with Glimm’s method which preserves their discontinuous character without any smearing, thus allowing to maintain self-consistency in the shock solutions. In smooth flows either Glimm’s or a higher order Godunov’s method can be applied, with the latter producing better results when approximations are introduced in the Riemann solver.
Journal: Journal of Computational Physics - Volume 227, Issue 1, 10 November 2007, Pages 776–796